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We introduce a new method to construct finite orthogonal quadrature filters
using convolution kernels and show that every filter with value 1 at the origin can
be obtained from an even nonnegative kernel.

We apply the method to estimate the optimal frequency localization of finite
filters. The frequency localization #p of a finite filter m0 is given by the distance in
L p-norm between |m0 |2 and the Shannon low-pass filter. For each N>0 there is a
filter mN

0 of length 2N minimizing the value of #p . We prove that for such a mini-
mizing sequence we have # p

p(mN
0 )=O(1�N), 1�p�2, and this estimate is optimal.

We construct several new families of both MRA and non-MRA filters with optimal
asymptotic frequency localization. � 2001 Academic Press

Key Words: orthogonal quadrature filters; multiresolution analysis; frequency
localization of wavelet packets.

1. INTRODUCTION

A pair of orthogonal quadrature filters is a pair (m0 , m1) of 2?-periodic
measurable functions for which the matrix

_m0(!)
m1(!)

m0(!+?)
m1(!+?)& (1)

is unitary a.e. We are interested in the case where m0 and m1 are tri-
gonometric polynomials with real valued coefficients. Suppose we have a
trigonometric polynomial m0 with real valued coefficients satisfying

|m0(!)|2+|m0(!+?)|2#1. (2)

Taking m1 to be the trigonometric polynomial

m1(!)=ei:e&i! m0(!+?), (3)
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where : # R is a constant, will make (1) unitary everywhere. So the construction
of pairs of finite quadrature filters reduces to finding ``nice'' solutions of (2).

In the present paper we introduce a new method to construct such tri-
gonometric polynomials using certain convolution kernels. The most
important class of solutions of (2) is the one where the filter m0 takes on
the value 1 at 0. In this case we can show that all such m0 's are given in
terms of a nonnegative convolution kernel. All of this will be done in Sec-
tion 2. Other types of general formulas of orthogonal quadrature filters are
considered in [7].

In Section 3 we apply the method to construct filters with optimal fre-
quency resolution. The frequency resolution of a filter m0 is given by the
quantity #p(m0) defined by

#p(m0)=|
?

&?
|/[&?�2, ?�2](!)&|m0(!)| 2| p d!, 1�p�2. (4)

Remark 1.1. Equation (3) shows that #p(m0)1�p is exactly the
L p[&?, ?]-distance between the high-pass filter m1 and the idealized high-
pass filter /[&?, &?�2) _ (?�2, ?](!) so all the estimates for #p below can be
restated in terms of this distance.

One important application of quadrature filters, where the frequency
localization #p matters, is to the construction of nonstationary wavelet
packets. A problem one has to deal with in the wavelet packet construction
using finite filters is that the wavelet packets lose some of their frequency
resolution at high frequencies. This is due to the fact that every finite filter
m0 is only an approximation to the idealized low-pass filter /[&?�2, ?�2](!).
So it is of interest to find an explicit expression for the filter of length 2N
that gives the best approximation of /[&?�2, ?�2](!) w.r.t. some appropriate
measure, and to find the best possible estimates for the error. Hess-Nielsen
proved in [5] that if we are restricted to using filter of length 2N at a
certain scale in the wavelet packet construction then the filter that gives the
optimal frequency localization for the wavelet packets at the following scale
is the filter of length 2N that minimizes #1 . He also proved that there is a
unique filter (up to a phase factor) of length 2N that minimizes #1 . From
this result we easily deduce the following result

Theorem 1.1. For each p, 1�p�2, and N # N there is a quadrature
filter m0 of length 2N minimizing (4). The minimizing quadrature filter of
length 2N is unique up to a phase factor.

Remark 1.2. The proof for p=1 can be found in [4]. The uniqueness
result for 1<p�2 is due to the fact that L p[&?, ?) is strictly convex.
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For each p, 1�p�2, we call a filter of length 2N that minimizes #p a
Hess filter of length 2N.

The main result we prove on frequency resolution is the following
theorem, which will be proved at the end of Section 3.

Theorem 1.2. Fix p, 1�p�2. Let mN
0 be a Hess filter of length 2N.

Then there exist finite positive constants c and C (depending only on p) such
that

c
N

�#p(mN
0 )�

C
N

.

To get the upper bound we construct explicit examples of families of
quadrature filters with optimal frequency resolution (optimal in the sense
of order) using certain convolution kernels such as Feje� r�Korovkin and
Jackson kernels. The lower bound applies to all filters of length 2N, and
the constant can be chosen independent of p.

A special class of filters is the family of filters associated with multi-
resolution analyses (called MRA filters). An MRA filter m0 generates the
scaling function , associated with the MRA by

,� (!)= `
�

j=1

m0(2& j!).

A sufficient condition for a filter m0 satisfying (2), and taking on the value
1 at 0, to be an MRA filter is that m0 does not vanish on [&?�2, ?�2] (see
[3]). In Section 4 we construct two families of finite MRA filters having
optimal frequency resolution.

2. FILTERS GENERATED BY CONVOLUTION KERNELS

In this section we introduce a new method to construct finite quadrature
filters convolution operators of polynomial type. But first we make some
general and well known observations about trigonometric polynomials
satisfying (2).

Suppose m0 is a trigonometric polynomial with real coefficients satisfying
(2). By shifting the phase of m0 , if necessary, we can always assume m0 can
be written as

m0(!)=
1

- 2
:
N

n=0

hneik!.
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Then condition (2) can be written in terms of the coefficients as

:
k # Z

hk hk+2l=$0, l ,

which forces N to be odd. A simple calculation shows that

|m0(!)|2= 1
2+ :

(N&1)�2

l=0
_ :

k # Z

hkhk+2l+1& cos ((2l+1) !). (5)

Conversely, any nonnegative trigonometric polynomial of the form

fN(!)= 1
2+ :

N&1

l=0

alcos((2l+1) !) (6)

satisfies (2) and it follows from the factorization theorem of Feje� r�Riesz
(see [3, p. 83]) that fN can be written fN(!)=|m0(!)| 2, where

m0(!)=
1

- 2
:

2N&1

n=0

hnein!, hk # R, k=0, 1, ..., 2N&1,

is a quadrature filter of length (at most) 2N.
The Feje� r�Riesz theorem thus reduces the problem to finding non-

negative trigonometric polynomials of the form (6). Therefore we refer to
nonnegative function of the form (6) as finite filters with the understanding
that one has to apply the Feje� r�Riesz theorem to get the actual filter.

Let us classify the even trigonometric polynomials of degree at most n
according to the following definition. The first three families in Definition
2.1 represent different types of filters. The remaining families represent dif-
ferent types of kernels we want to use to generate the filters.

Definition 2.1. Let PEn be the collection of even trigonometric poly-
nomial of degree at most n. We let

Fn=[ f # PEEn | f�0 and \! : f (!)+ f (!+?)=1]

Fn
c=[ f # Fn | \! : f (0)� f (!) and f (0){1�2]

Fn
c, 1=[ f # Fn

c | f (0)=1]

Kn={K # PEn | \! : |
!+?�2

!&?�2
K(u) du�0 and |

?

&?
K(u) du=2?=

Kn
pos=[K # Kn | K�0]

Kn
pos, c={K # Kn

pos | \! : |
!+?�2

!&?�2
K(u) du�|

?�2

&?�2
K(u) du{?=.
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The following two lemmas reveal some of the relationships between the
families of trigonometric polynomials defined above. We let

En=[ f # PEn | f # span[cos(2l!), l=1, 2, ...]].

Lemma 2.1. The map I : Kn � Fn defined by

I(K, !)=
1

2? |
?�2

&?�2
K(!&u) du, K # Kn, (7)

induces a 1-1 correspondence between Kn�En and Fn.

Proof. Let K # Kn and set g(!)=I(K, !). Clearly, g�0, and we have

g(!)+ g(!+?)=
1

2? |
?�2

&?�2
K(!&u) du+

1
2? |

?�2

&?�2
K(!+?&u) du

=
1

2? |
?

&?
K(u) du

=1.

Also, g is an even trigonometric polynomial of degree at most n since every
trigonometric polynomial of degree m induces a convolution operator of
polynomial type m, i.e. g # Fn. Conversely, take any g # Fn. Then, using (6),

g(!)= 1
2+ :

N&1

l=0

al cos((2l+1) !), 2N&1�n,

for some sequence of coefficients [al]. Notice that the Fourier series of
/[&?�2, ?�2] is given by

/[&?�2, ?�2](!)=
1
2

+
2
?

:
�

l=0

(&1)l

2l+1
cos ((2l+1) !). (8)

Therefore, we are led to define

K(!)=1+? :
N&1

l=0

(&1)l(2l+1) al cos((2l+1) !), (9)

and from the special form of (8), we deduce that

g(!)=
1
2

+ :
N&1

l=0

al cos((2l+1) !)=
1

2? |
?

&?
/[&?�2, ?�2](u) K(!&u) du.
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Then, since g # Fn,

2?g(!)=|
!+?�2

!&?�2
K(u) du�0

and

2?=2?[ g(!)+ g(!+?)]=|
?

&?
K(u) du,

we have K # Kn. Clearly, the kernel of the map I is En which completes the
proof. K

We call the kernel associated to |m0 |2 # Fn by (9) the filter generating
kernel for |m0 |2. As a simple example, let us consider the generating kernels
for two of the Daubechies filters.

Example 2.1. The Daubechies filter of length 4 is given by

|m0, 2 (!)|2= 1
2+ 9

16 cos(!)& 1
16 cos(3!)

so its filter generating kernel is given by

Km0 , 2
(!)=1+

9?
16

cos(!)+
3?
16

cos(3!).

The Daubechies filter of length 8 is given by

|m0, 4(!)|2= 1
2+ 1225

2048 cos(!)& 245
2048 cos(3!)+ 49

2048 cos(5!)& 5
2048 cos(7!).

The corresponding generating kernel is given by

Km0 , 4
(!)=1+

1225?
2048

cos(!)+
735?
2048

cos(3!)+
245?
2048

cos(5!)+
35?
2048

cos(7!).

It is often preferable to use filters that take on the value 1 at 0, e.g. if we
want the filter to generate a multiresolution analysis or induce a con-
vergent subdivision scheme. The following lemma shows that every filter in
Fn

c can mapped onto such a filter using an affine map.

Lemma 2.2. We can define a map U : Fn
c � Fn

c, 1 by

Uf (!)=1+
f (!)& f (0)
f (0)& f (?)

, f # Fn
c .
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Proof. Let f # Fn
c , and note that f (0){ f (?) so it makes sense to define

g(!)=Uf (!). By the definition of Fn
c we have | f (!)& f (0)|� f (0)& f (?) so

g�0, and clearly g(0)=1. Also,

g(!)+ g(!+?)=1+
f (!)& f (0)
f (0)& f (?)

+1+
f (!+?)& f (0)

f (0)& f (?)

=
[2f (0)&2f (?)]+[ f (!)+ f (!+?)]&2f (0)

f (0)& f (?)

=
1&2f (?)

f (0)& f (?)

=1,

since f (0)& f (?)=[1& f (?)]& f (?). Hence g # Fn
c, 1 . K

Remark 2.1. The reader should compare the construction in Lemma
2.2 to the construction of the Daubechies filters. The family of Daubechies
filters can be defined using the expression

|mN
0 (!)|2=1&cN |

!

0
sin2N&1(u) du,

where

c&1
N =|

?

0
sin2N&1 (u) du.

This is exactly the same as above with the exception that we let &f $(!),
f # Fn

c , play the role of the odd kernel sin2N&1(!).

Finally, we define a map L : Kn � Kn
pos by

L(K, !)=
K(!)+:(K)

1+:(K)
,

where :(K)=max[0, &min! # [0, ?] K(!)].

Let us summarize the results presented above in the following theorem,
which tells us how to generate quadrature filters taking the value 1 at 0
using certain even nonnegative convolution kernels. We use the notation
I&1 to denote the map that associates to a filter from Fn the kernel in Kn

given by (9).
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Theorem 2.1. We have the following maps

Kn
pos, cw�I Fn

c w�U Fn
c, 1 ,

and

Fn
c, 1w�I

&1
Knw�L Kn

pos, c ,

with UILI&1: Fn
c, 1 � Fn

c, 1 the identity map.

Proof. Take f # Fn
c, 1 . Then I &1( f, !)=K(!), where

f (!)=
1

2? |
?�2

&?�2
K(!&u) du.

Clearly, K satisfies �!+?�2
!&?�2 K(u) du��?�2

&?�2 K(u) du=% ? since f # Fn
c, 1 . It

follows that

LI&1( f, !)=L(K, !)=
K(!)+:(K)

1+:(K)
# Kpos, cn .

Put ;=1+:(K) and note that

ILI&1( f, !)=
1

2?; |
?�2

&?�2
[K(!&u)+:(K)] du=

f (!)+:(K)�2
;

# Fn
c .

Hence

UILI&1( f, !)=1+
1
; _

f (!)+:(K)�2&( f (0)+:(K)�2)
1
; ( f (0)& f (?)) &

=1+
f (!)& f (0)
f (0)& f (?)

= f (!),

since f (0)=1 and f (?)=0. K

Remark 2.2. The important thing to notice about Theorem 2.1. is that
it shows that every finite quadrature filter of length 2n taking the value 1
at 0 can be constructed by applying the map UI to a kernel from K2n

pos, c .

3. OPTIMAL ASYMPTOTIC FREQUENCY RESOLUTION

This section is devoted to a proof of Theorem 1.2. We begin by obtaining
the lower bound appearing in Theorem 1.2. The bound is a consequence of
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the fact that the idealized low-pass filter is not continuous and therefore
has a Fourier series with slowly decaying coefficients. To get the upper
bound we apply the method introduced in the previous section to construct
a sequence of filters with optimal resolution using the well known
Feje� r�Korovkin kernels from approximation theory. Additional examples
of filters with optimal resolution are constructed using Jackson kernels and
their generalizations.

Lemma 3.1. Fix 1�p�2. Let mN
0 be any filter of length 2N. Then there

is a constant c>0 (independent of N) such that

#p(mN
0 )�

c
N

.

Proof. Recall that the Fourier series of /[&?�2, ?�2](!) is given by

/[&?�2, ?�2](!)=
1
2

+
2
?

:
�

l=0

(&1)l

2l+1
cos((2l+1) !).

Let

SN(!)=
1
2

+
2
?

:
N&1

l=0

(&1)l

2l+1
cos((2l+1) !).

We have

|
?

&?
|/[&?�2, ?�2](!)&SN(!)|2 d!=

4
?2 :

�

l=N

1
(2l+1)2�

c
N

for some c>0 [e.g. c=?&2 will do]. However, SN is the best L2[&?, ?]
approximation to /[&?�2, ?�2](!) by a trigonometric polynomial of degree
less than 2N. Hence,

|
?

&?
|/[&?�2, ?�2](!)&|mN

0 (!)|2|2 d!�|
?

&?
|/[&?�2, ?�2](!)&SN(!)| 2 d!�

c
N

.

This proves the case p=2. For 1�p<2 we note that

|
?

&?
|/[&?�2, ?�2](!)&|mN

0 (!)|2| p d!�|
?

&?
|/[&?�2, ?�2](!)&|mN

0 (!)|2|2 d!�
c
N

,

due to the fact that |/[&?�2, ?�2](!)&|mN
0 (!)|2|�1 by the filter condition (2). K

The above result leads us to the following definition,
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Definition 3.1. Let S=[mN
0 ]N # N be a sequence of finite filters with

corresponding filterlengths [dN]. We say that S has optimal asymptotic
frequency resolution if

#p(mN
0 )=O(1�dN), \p # [1, 2].

It is not clear that there are any families of finite filters with optimal
asymptotic frequency resolution. However, we now know that it suffices to
find a sequence of finite polynomial kernels Kn # Kdn

pos with dn=O(n) such
that

&TKn
(/[&?�2, ?�2] , } )&/[&?�2, ?�2] &L p[&?, ?)=O(n&1�p),

where TKn
: L p[&?, ?) � L p[&?, ?), 1�p<�, is defined by

TKn
( f, !)=

1
2? |

?

&?
f (u) Kn(!&u) du.

We need a classical result from approximation theory. First, some addi-
tional notation.

Definition 3.2. The L p[0, 1)-modulus of continuity of f # L p[0, 1) is
given by

|p( f, $)= sup
|h|�$

& f ( } &h)& f ( } )&Lp[&?, ?) , $>0.

Example 3.1. One easily checks that the L p[&?, ?)-modulus of continuity
for the idealized low-pass filter /[&?�2, ?�2] is given by

|p(/[&?�2, ?�2] , $)=(4$)1�p .

We can now state the theorem we need. Suppose the even nonnegative
periodic kernel Pn can be written in the form

Pn(!)=1+2 :
dn

k=1

%n(k) cos(k!). (10)

Clearly, TPn
maps L p[&?, ?) into the the set of trigonometric polynomials

of degree at most dn . We have the following result.

Theorem 3.1. Let [Pn] be a family of positive periodic kernels of the
type (10). Fix 1�p<�. Suppose dn=O(n), and 1&%n(1)=O(n&2), then

&TPn
( f, } )& f&Lp[&?, ?)=O(|p( f, n&1)), f # L p[&?, ?).
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The proof can be found in [1]. From Theorem 3.1 and Example 3.1 we
see that for every sequence of kernels [Pn] of type (11) with dn=O(n) and
1&%n(1)=O(n&2), there is a corresponding family S=[mn

0] of finite
filters with optimal asymptotic frequency resolution, given by

|mn
0(!)|2=

1
2? |

?�2

&?�2
Pn(!&u) du.

We can now complete the proof of our main result, Theorem 1.2.

Lemma 3.2. There is a sequence of filters [mn
0]�

n=1 , where mn
0 has length

2n, such that

#p(mn
0)=O(1�n).

Proof. Consider the Feje� r�Korovkin kernel Kn defined by

Kn(!)={
2 sin2(?�(n+2))

n+2 _ cos((n+2) !�2)
cos(?�(n+2))&cos(!)&

2

(n+2)�2,

! � \
?

n+2
+2Z?

! # \
?

n+2
+2Z?.

One can check that (see [1, Chap. 1])

Kn(!)=1+2 :
n

k=1

%n(k) cos k!,

with

%n(k)=
1

2(n+2) sin(?�(n+2))

__(n&k+3) sin
k+1
n+2

?&(n&k+1) sin
k&1
n+2

?& .

In particular,

1&%n(1)=1&cos(?�(n+2))=O(n&2).

We define the Feje� r�Korovkin filters by

|mn
0(!)|2=

1
2? |

?�2

&?�2
Kn(!&u) du.
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Then mn
0 has length n+1 if n is odd and length n if n is even. It follows

from Theorem 3.1 that

#p(mn
0)=O(1�n). K

3.1. Additional Examples

We give two additional examples of families of finite filters constructed
using the ideas above. The second family has optimal asymptotic frequency
resolution, the first does not.

Feje� r filters. The Feje� r kernel Fn is defined by

Fn(!)= :
n

j=&n \1&
| j |

n+1+ eij!=
1

n+1 {sin
n+1

2
!

sin !�2 =
2

and we call the corresponding filters Feje� r filters. Note that the Feje� r filters
TFn

(/[&?�2, ?�2] , } ) are the arithmetic means of the partial sums of the
idealized filter /[&?�2, ?�2] . However Fn does not satisfy the conditions of
Theorem 3.1 [1&%n(1)=O(n&1) in this case]. An easy calculation shows
that

&/[&?�2, ?�2]&TFn
(/[&?�2, ?�2] , } )&L1[&?, ?)=O \log n

n + ,

and this estimate is optimal. So the Feje� r filters are not a family of filters
with optimal asymptotic frequency resolution. However, one can verify that

&/[&?�2, ?�2]&TFn
(/[&?�2, ?�2] , } )& p

L p[&?, ?)=O(1�n),

for 1<p<2, so the failure to be optimal is only in L1[&?, ?).

Jackson filters. The Jackson kernel is defined by

jn(!)=
3

n(2n2+1) _
sin(n!�2)
sin(!�2) &

4

=1+2 :
2n&2

k=1

%2n&2(k) cos k!,

with %2n&2(1)=1&3�(2n2+1), see [1, p. 60]. So [ jn] satisfies the condi-
tions of Theorem 3.1. The corresponding family of filters has optimal
asymptotic frequency resolution. Note that the filter corresponding to jn

has length 2n&2.
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Generalized Jackson filters. The two examples above can be generalized
by introducing the generalized Jackson kernel given by

jn, s(!)=
1

2n, s\
sin(n!�2)
sin(!�2) +

2s

, n, s # N,

where

2n, s=2? |
?

&? \
sin(n!�2)
sin(!�2) +

2s

d!.

Notice that jn, s is of type (10), which follows from the trigonometric identity

1+2 :
n&1

k=1 \1&
k
n+ cos k!=

1
n \

sin(n!�2)
sin(!�2) +

2

.

The associated Jackson filter of type s is given by

|m jn , s
0 (!)|2=

1
2? |

?�2

&?�2
jn, s (!&u) du.

We notice that the Feje� r kernels and Jackson kernels correspond to s=1
and s=2, respectively. The reader can consult [6] for further examples of
even nonnegative kernels that generate quadrature filters with optimal fre-
quency localization. The kernels introduced in [6] are based on Jacobi
polynomials.

4. MRA FILTERS WITH OPTIMAL FREQUENCY LOCALIZATION

The major ``problem'' with the filters constructed so far is that they do
not take on the value 1 at 0, so they are not associated with multiresolu-
tion analyses. In this section we apply the affine map introduced in Lemma
2.2 to make small corrections to the filters so they do become MRA filters.
Moreover, the modifications do not interfere with the fact that each family
has optimal asymptotic frequency resolution. However, we first have to
show that the corresponding kernels are of type K2n

pos, c . The following
lemma will take care of that.

Lemma 4.1. Let fn, s(!)=|m jn, s
0 (!)|2 be the square of the generalized

Jackson filters, and let gn(!)=|mKn
0 (!)| 2 be the square of the Feje� r�Korovkin

filters. Then f2n, s and g2n are decreasing on [0, ?) for s, n # N.
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Proof. First we consider the generalized Jackson filters. Notice that it
suffices to prove that the functions f2n, s are decreasing on [0, ?�2) since
they are even and satisfy

f2n, s(!)+ f2n, s(!+?)=1.

We have, for 0�!�?�2,

f $2n, s(!)=|
?�2

&?�2

d
d!

j2n, s(!&u) du

= j2n, s(?�2+!)& j2n, s(!&?�2)

= j2n, s(?�2+!)& j2n, s(?�2&!)

=
1

22n, s {\
sin(n(?�2+!))
sin((?�2+!)�2)+

2s

&\ sin(n(?�2&!))
sin((?�2&!)�2)+

2s

=
=

sin(n(?�2+!))2s

22n, s { 1
sin((?�4+!�2)2s&

1
sin((?�4&!�2)2s=

�0.

The proof for g2n is similar. K

Hence, we can apply Lemma 2.2 to obtain the filters we want.

Corollary 4.1. The finite filters [m j2n , s
0 ]�

n=1 and [mK2n
0 ]�

n=0 for which

|m j2n , s
0 (!)|2=Uf2n, s(!)=1+

f2n, s(!)& f2n, s(0)
f2n, s(0)& f2n, s(?)

,

and

|mK2n
0 (!)| 2=Ug2n(!)=1+

g2n(!)& g2n(0)
g2n(0)& g2n(?)

,

where f2n, s and g2n are defined as in Lemma 4.1, are two families of MRA
filters.

Proof. The filters are MRA since they only vanish at the points
(2Z+1) ?. K

We need to check that the filters still have optimal asymptotic frequency
resolution. We have the following general result.
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Theorem 4.1. Let [mn
0] be a sequence of filters with optimal asymptotic

frequency resolution. Let dn denote the length of mn
0 and suppose that

|mn
0 | 2 # Fdn

c for each n. Then each sequence of finite filters [m~ n
0] satisfying

|m~ n
0(!)|2=U|mn

0(!)| 2 has optimal asymptotic frequency resolution.

Proof. It suffices to consider the case p=1. Note that by the QMF con-
dition (2),

|
?

&?
|/[&?�2, ?�2](!)&U |mn

0(!)|2 | d!=2 |
?�2

&?�2
[1&U |mn

0(!)|2] d!.

Moreover,

|
?�2

&?�2
[1&U |mn

0(!)| 2] d!=&|
?�2

&?�2

|mn
0(!)| 2&|mn

0(0)|2

|mn
0(0)| 2&|mn

0(?)|2 d!

=&
1

|mn
0(0)|2&|mn

0(?)|2 [:n&|mn
0(0)| 2 ?], (11)

where :n=�?�2
&?�2 |mn

0(!)| 2 d!. We know that |?&:n |=O(1�dn) since [mn
0]

has optimal asymptotic frequency resolution. We also observe that
1&|mn

0(0)| 2=O(1�dn) since |mn
0(0)| is the maximum value of |mn

0(!)| on
[&?�2, ?�2]. We use these estimates in (11) to complete the proof. K

We have the following easy Corollary.

Corollary 4.2. The two families of MRA filters corresponding to the
Jackson and Feje� r�Korovkin kernels, respectively, both have optimal
asymptotic frequency localization.

Jackson and Feje� r�Korovkin wavelets. We conclude this paper by
presenting the plots of some of the wavelets corresponding to the two
families of MRA filters introduced above. We have fixed the filterlength at
12 which makes it easier to compare the functions. Figure 1 shows the scal-
ing function and wavelet generated by the Feje� r�Korovkin filter of length
12. Notice that the wavelet is more symmetric but less smooth than com-
parable Daubechies wavelets (see e.g. [2, p. 197]).

Figure 2 shows some of the Jackson wavelets. One should notice that the
regularity of the Jackson wavelet depends primarily on its type, and not on
the length of the filter. This can be observed directly from the formula for
the Jackson kernel jn, s , which shows that |mjn, s

(!)|2=1&O( |!|2s) at the
origin. We can therefore obtain arbitrarily smooth wavelets by choosing
both type s and n sufficiently large.
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FIG. 1. (a) The scaling function generated by the Feje� r�Korovkin MRA filter of length
12, (b) is the corresponding wavelet.

FIG. 2. (a), (c), and (e) are the plots of the scaling functions generated by the Jackson MRA
filter of length 12 and type 1, 2, and 3, resp. (b), (d), and (f) are plots of the corresponding
wavelets.
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